
The conference of young scientists «Pidstryhach readings – 2024»
May 27–29, 2024, Lviv

UDC 517.54

EXTREMAL PROBLEM ON DOMAINS
CONTAINING ELLIPSE POINTS

Iryna Denega and Yaroslav Zabolotnyi

Institute of mathematics of the National Academy of Sciences of Ukraine,
iradenega@gmail.com, yaroslavzabolotnii@gmail.com

Let N, R be the sets of natural and real numbers, respectively, C be the
complex plane, C = C

∪
{∞} be its one point compactification, U be the

open unit disk in C. A function gB(z, a) which is continuous in C, harmonic
in B\{a} apart from z, vanishes outside B, and in the neighborhood of a has
the following asymptotic expansion

gB(z, a) = − ln |z − a|+ γ + o(1), z → a,

is called the (classical) Green function of the domain B with pole at a ∈
B. The inner radius r(B, a) of the domain B with respect to a point a is
the quantity eγ . Let G be a domain in extended complex plane Cz. By a
quadratic differential in G we mean the expression Q(z)dz2, where Q(z) is a
meromorphic function in G [2].

The following result was established by G.M. Goluzin [1] using the varia-
tional method.

Theorem 1. For functions fk(z) which univalently map the disc |z| < 1
onto mutually non-overlapping domains, k ∈ {1, 2, 3}, exact estimate holds∣∣∣∣∣

3∏
k=1

f ′
k(0)

∣∣∣∣∣ 6 64

81
√
3
|(f1(0)− f2(0))(f1(0)− f3(0))(f2(0)− f3(0))|.

Equality is attained only for functions w = fk(z) which conformally and uni-
valently map the disc |z| < 1 onto the angles 2π/3 with vertex at point w = 0
and bisectors of which pass through points fk(0), |fk(0)| = 1.

E.V. Kostyuchenko (see, for example, [2]) proved that the maximum value
of multiplication of inner radiuses for three simply connected non-overlapping
domains in the disk is attained for three equal sectors. However, this state-
ment remains valid for multiply connected domains Dk. It follows from V.N.
Dubinin’s generalization of Theorem 1 inequality to the case of arbitrary mero-
morphic functions [2].

Using above-posed results, the following theorem is valid.
Let M =

{
z = x+ iy : x2

d2 + y2

t2 = 1, d2 − t2 = 1
}

and let d∗ = d−
√
d2 − 1.
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Theorem 2. Let n ∈ N, n > 3. Then, for any system of different points ak
such that ak ∈ M , k = 1, n, and for any collection of mutually non-overlapping
domains {Bk}nk=1, ak ∈ Bk ⊂ C \ [−1, 1], k = 1, n, the inequality

n∏
k=1
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∣∣∣∣∣
holds. The sign of equality is attained, if ak and Bk, k = 1, n, are, respectively,
the poles and circular domains of the quadratic differential

Q(z)dz2 = −
(
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2 + 1

2z

)n−2 (( z
2 + 1

2z

)n
+ 1
) (

1
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)n
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)2 dz2.
Note, that by some linear transformation w = pz+z0 we can transform an

arbitrary ellipse x−x0

d2
0

+ y−y0

t20
= 1 on the complex plane onto an ellipse of the

form x2

d2 +
y2

t2 = 1 for which d2− t2 = 1. Moreover, the inner radii of respective
domains in this transformation will be treated as |p| : 1. Therefore, in order to
obtain an estimate of the product of inner radii of non-overlapping domains
containing points of an arbitrary ellipse, it is necessary to transform it onto
the ellipse M by an appropriate linear transformation and apply Theorem 2.
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ЕКСТРЕМАЛЬНА ЗАДАЧА ДЛЯ ОБЛАСТЕЙ, ЩО
МIСТЯТЬ ТОЧКИ ЕЛIПСА

В роботi одержано розв’язок екстремальної задачi про максимум добутку
внутрiшнiх радiусiв на системi багатозв’язних областей Bk, k = 1, n, якi
взаємно не перетинаються, i мiстять точки ak, k = 1, n, розташованi на
довiльному елiпсi x2

d2
+ y2

t2
= 1 для якого d2 − t2 = 1.
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