The conference of young scientists «Pidstryhach readings – 2021» May 26–28, 2021, Lviv

UDC 512.54

Verbal subgroups of alternating group A_n and Matieu groups

Ruslan Skuratovskii

Igor Sikorsky Kiev Polytechnic Institute, ruslcomp@gmail.com, r.skuratovskii@kpi.ua

The verbal width of a free group was investigated by Sucharit Sarkar [1] Sarkar proved that an arbitrary commutator of free group of rank greater than 1 cannot be generated by only 2 squares.

We consider set of all squares $S(A_n)$ of A_n as generating set for A_n .

The width of the verbal subgroup V(G, W) over set W is equal to a least value of $m \in \mathbb{N} \cup \{\infty\}$ such that every element of the subgroup V(G, W) is represented as the product of at most m values of words from W.

The conditions when an arbitrary $g \in A_n$ as well as $h \in PSL_2(F_p)$ can be presented as one squares were also found by us.

Therefore, we research the verbal width by squares of A_n and some Matieu groups. In a group G a set of squares of its elements is denoted by $\mathbb{S}(\mathbb{G})$.

Since A_n is generated by all pairs of transpositions in particular by Mitsuhashi's generating set [2] then $S(A_n)$ generates whole A_n . Therefore one can consider $diam(A_n, S(A_n))$ [6]. Thus it can be applied to investigation of distance between permutations on Cayley graph.

Thus, problem of element verbal width is solved for the verbal subgroup $V(S(A_n), A_n)$ which coincides with A_n .

Theorem 1. The set of all squares $S(A_n)$ from A_n does not coincide with the whole alternating group A_n and does not form a proper subgroup of A_n . The normal closure of $S(A_n)$ is A_n .

Theorem 2. An arbitrary element g of A_n having cyclic structure $[(2k)^{m_{2k}}, (2r)^{m_{2r}}]$ can be presented in the form of a product of 2 squares of permutations of A_n with 2 joint elements.

Theorem 3. The verbal width of $V(A_n, S(A_n))$ in A_n is 2.

Corollary 1. An arbitrary element of A_n can be presented in the form of a product of two squares of elements from A_n .

Corollary 2. An arbitrary element g of A_n having cyclic structure [(2k), (2r)] can be presented in form of a product of 2 squares by 2k + 2r - 2 ways.

The conference of young scientists «Pidstryhach readings – 2021» May 26–28, 2021, Lviv

The conditions when an arbitrary $g \in A_n$ can be presented as one squares were also found by us. For instance the element g = (10, 11, 12)(1, 2, 3)(4, 5)(6, 7)is square in A_{12} .

Proposition 1. Let the element $\pi = (a_1 \dots a_l) (b_1 \dots b_l) \in A_{2l}$ then the square roots from π exist in A_{2l} . Moreover, there are l+1 different roots from π when l is odd and there l different roots if l is even.

For instance, the permutation consisting of two 3-cycles s = (123)(456) can be presented as square of the following 4 elements: $t_1 = (142536), t_2 = (152634), t_3 = (162435), t_4 = (132)(465).$

Theorem 4. The verbal width of verbal subgroups generated by squares of the following Mathieu groups M_8, M_9, M_{10} are equal to 1. The structure of $H_9 = V(S(M_9), M_9)$ is $H_9 \simeq (C_3 \times C_3) \rtimes C_2$.

Theorem 5. The following prime Mathieu groups M_{11} , M_{12} , M_{20} , M_{21} and M_{22} have verbal width $vw(M_{ij}, S(M_{ij})) = 2$ by square 2.

Theorem 6. Let $A \in PSL_2(F_p)$, where \mathbb{F}_p is some field. For matrix $A \in PSL_2(F_p)$, there is a matrix B over \mathbb{F}_p such that

 $B^2 = A$

if and only if, tr(A) + 2 or -tr(A) + 2 is a quadratic residue in \mathbb{F}_p .

- Sucharit Sarkar. Commutators and squares in free group, Algebra Geometry Topologe, (2004), 4, 595-602.
- Peter J. Cameron and Philippe Cara. Independent generating sets and geometries for sym- metric groups. Journal of Algebra, 2002. 258(2), 641 – 650.
- Martin Liebeck, E. A. O'Brien, Aner Shalev, Pham Huu Tiep. The Ore conjecture. Journal of the European Mathematical Society January 2010, 12(4), 939-1008.
- 4. V. A. Roman'kov. The commutator width of some relatively free lie algebras and nilpotent groups. Siberian Mathematical Journal (2016) vol. 57, 679-695.
- 5. Ruslan V. Skuratovskii On commutator subgroups of Sylow 2-subgroups of the alternating group, and the commutator width in wreath products. European Journal of Mathematics (2021), volume 7, 353–373.
- Laszlo Babai, Akos Seress. On the diameter of permutation groups. European Journal of Combinatorics. Volume 13, Issue 4, July 1992, 231-243.

Вербальні підгрупи знакозмінної групи A_n і груп Матьє.

Досліджено вербальну ширину вербальних підгруп в знакозмінній групі і в деяких групах Матье.