УДК 512.552.1

PRIME, DIFFERENTIALLY PRIME AND QUASI-PRIME SUBSEMIMODULES

Ivanna Melnyk

Ivan Franko National University of Lviv, ivannamelnyk@yahoo.com

A set R together with two associative binary operations, called addition (+) and multiplication (\cdot) , is called a *semiring* provided addition is commutative and multiplication distributes over addition both from the left and from the right. A semiring R is called *commutative* if multiplication is commutative.

A semiring derivation is defined in [1] as an additive map $\delta: R \to R$ satisfying $\delta(ab) = \delta(a)b + a\delta(b)$ for any $a,b \in R$. A semiring R equipped with a derivation δ is called *differential* with respect to the derivation δ , or δ -semiring. In [2], the authors investigated some simple properties of semiring derivations and differential semirings. The objective of this paper is to investigate some interrelations between prime, quasi-prime and differentially prime subsemimodules of differential semimodules.

In what follows let R be a δ -semiring, not necessarily commutative, and let M be a left semimodule over the semiring R. A map $d:M\to M$ is called a *derivation* of the semimodule M, associated with the semiring derivation $\delta:R\to R$ if d(m+n)=d(m)+d(n) and $d(rm)=\delta(r)m+rd(m)$ for any $m,n\in M$, $r\in R$. A left R-semimodule M together with a derivation $d:M\to M$ is called a *differential semimodule*.

A subsemimodule N of the R-semimodule M is called *differential* if $d(N) \subseteq N$. For a subset $X \subset M$ a *differential* of X is defined as a set $X_\# = \left\{ x \in M \,\middle|\, x^{(n)} \in X \quad \forall n \in \mathbb{N} \cup \{0\} \right\}$, where $x^{(n)}$ denotes the n-th derivative of $x \in M$.

A non-empty subset T of the semimodule M is called an Sm-system of M if for every $s \in S$ and $t \in T$ there exists $r \in R$ such that $srt \in T$. A differential subsemimodule N of M will be called *quasi-prime* if it is maximal among differential subsemimodules of M disjoint from some Sm-system of M. Every prime subsemimodule, which is also differential, is quasi-prime, so is maximal subsemimodule.

Конференція молодих учених «Підстригачівські читання – 2019», 27–29 травня 2019 р., Львів

Theorem. For every differential subsemimodule N of the differential semimodule M with the ascending chain condition on differential subsemimodules the following are equivalent:

- 1. N is a differentially prime subsemimodule;
- 2. *N* is a quasi-prime subsemimodule;
- 3. $N = P_{\#}$ for some prime subsemimodule P of M.
- 1. Golan J. Semirings and their Applications. Springer Netherlands, 1999 382 p.
- 2. Chandramouleeswaran M., Thiruveni V. On derivations of semirings // Advances in Algebra. 2010. Vol. 1, No. 1. P. 123–131.

ПЕРВИННІ, ДИФЕРЕНЦІАЛЬНО-ПЕРВИННІ ТА КВАЗІПЕРВИННІ ПІДНАПІВМОДУЛІ

У роботі досліджено диференціальні напівмодулі та їх диференціальні піднапівмодулі. Досліджено взаємозв'язки між квазіпервинними та диференціально-первинними піднапівмодулями в деяких напівмодулях.