Конференція молодих учених «Підстригачівські читання – 2017», 23–25 травня 2017 р., Львів

УДК 517.98

RECONSTRUCTION OF ENERGY-DEPENDENT STURM-LIOUVILLE EQUATIONS

Nataliya Terlych

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NASU, nataliya.pronska@gmail.com

The main object of our research is an energy-dependent Sturm-Liouville equation

$$-y"+qy+2\lambda py = \lambda^2 y \tag{1}$$

on (0,1) under some boundary conditions. Here p is a real-valued function from $L_{2,R}(0,1)$, q=r' with $r\in L_{2,R}(0,1)$ H (i.e. q is a real-valued distribution from the Sobolev space $W_{2,R}^{-1}(0,1)$), and λ is a spectral parameter. We consider equation (1) under two types of boundary conditions: the Dirichlet ones

$$y(0) = y(1) = 0 (2)$$

and the mixed ones

$$y(0) = y^{[1]}(1) = 0,$$
 (3)

where $y^{[1]} := y' - ry$ is a quasi-derivative of y.

For an eigenvalue λ_n of the problem (1), (2), denote by y_n the corresponding eigenfunction normalized by the initial conditions $y_n(0) = 0$ and $y_n^{[1]}(0) = \lambda_n$. Then the quantity $\alpha_n := 2\int_0^1 y_n^2(t)dt - \frac{2}{\lambda_n}\int_0^1 p(t)y_n^2(t)dt$ is

called the *norming constant* corresponding to the eigenvalue λ_n .

Denote by A the operator acting as $Ay = \ell(y) := -y'' + qy$ on the domain $dom A := \{ y \in dom \ \ell \mid y(0) = y^{[1]}(1) = 0 \}$. We assume that the following holds (A) the operator A is positive.

Under (A) the spectra of the problems (1), (2) and (1), (3) form an element of the set SDI which consists of all pairs (λ, μ) of increasing sequences $\lambda = (\lambda_n)_{n \in \mathbb{Z}^*}$, $\mathbb{Z}^* := \mathbb{Z} \setminus \{0\}$, and $\mu = (\mu_n)_{n \in \mathbb{Z}}$ of real numbers satisfying the following conditions:

http://www.iapmm.lviv.ua/chyt2017

Конференція молодих учених «Підстригачівські читання – 2017», 23–25 травня 2017 р., Львів

- (i) asymptotics: $\lambda_n = \pi n + h + \tilde{\lambda}_n$, $\mu_n = \pi (n 1/2) + h + \tilde{\mu}_n$, with some $h \in R$ and ℓ_2 -sequences $(\tilde{\lambda}_n)$ and $(\tilde{\mu}_n)$;
- (ii) almost interlacing: $\mu_k < \lambda_k < \mu_{k+1}$ for $k \in \mathbb{Z}^*$.

Denote by $\mathbf{sd}(p,r)$ the set of all pairs (λ,α) , where λ is an eigenvalue of (1), (2) and α the corresponding norming constant. Under assumption (A) $\mathbf{sd}(p,r)$ forms an element of the set SD2 which is the family of all sets $\{(\lambda_n,\alpha_n)\}_{n\in Z^*}$ consisting of pairs (λ_n,α_n) of real numbers satisfying the following properties:

- (i) λ_n are nonzero, strictly increasing with $n \in \mathbb{Z}^*$, and have the representation $\lambda_n = \pi n + h + \tilde{\lambda}_n$ for some $h \in \mathbb{R}$ and ℓ_2 -sequence $(\tilde{\lambda}_n)$;
- (ii) $\alpha_n > 0$ for all $n \in \mathbb{Z}^*$ and the numbers $\tilde{\alpha}_n := \alpha_n 1$ form an ℓ_2 -sequence. Our main results are the following theorems.

Theorem 1. ([2]) For every pair (λ, μ) from SD1, there exist unique real-valued $p, r \in L_2(0,1)$ such that μ and λ are respectively the spectra of problems (1), (2) and (1), (3).

Theorem 2. ([1]) For every set **sd** from SD2, there exist unique real-valued $p, r \in L_2(0,1)$ such that $\mathbf{sd} = \mathbf{sd}(p,r)$.

The reconstructing algorithms for both inverse problems will be formulated in the talk.

- Hryniv R., Pronska N. Inverse spectral problems for energy-dependent Sturm-Liouville equations // Inverse Problems. – 2012. – 28 (8): 085008 – 21 pp.
- Pronska N. Reconstruction of energy-dependent Sturm-Liouville equations from two spectra // Integral Equations and Operator Theory. – 2013. –76 (3) – P. 403–419.

ВІДНОВЛЕННЯ ЕНЕРГОЗАЛЕЖНИХ РІВНЯНЬ ШТУРМА-ЛІУВІЛЛЯ

Ми досліджуємо відновлення енергозалежних рівнянь Штурма—Ліувілля за двома спектрами та за спектром і набором відповідно визначених нормівних множників. Встановлено існування, єдиність та алгоритми відновлення.