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The well-known Cantor set is defined as follows:

o .
2¥={x=> k37" |k €{0,2}}.
i=1
In the asymptotic geometry there is a natural its analog called the macro-
Cantor set:

o0
2N = (x="k3 |k € 10,2},
i=1

The macro-Cantor set in the asymptotic geometry plays the same role as does
the Cantor set in zero-dimensional topology. The main result is a characterization
of the macro-Cantor set up to coarse equivalence.

We define a multi-map ®: X — Y between two metric spaces to be large
scale uniform if for every 6 €[0,00) the number

0 (6) =sup{diam(®(A)): AC Xdiam(A) <o}
is finite.

A multi-map ®: X — Y between metric spaces is called a coarse equivalence
if X)=Y, (Ifl(Y) =X and both the multi-maps &, & ! are large scale
uniform.

Metric space (X,d) is called asymptotically zero-dimensional, if for any
a > 0 there exists a totally bounded a-disjoint cover of X .

Theorem. A metric asymptotically zero-dimensional space (X, p) is coarsely
equivalent to the macro-Cantor set if and only if there exists a number a >0 such
that the following conditions hold:

1) Vne N 3d >0 VxeX theset U;(x) cannot be covered by less then n
balls of radius « .

2)Vd >0 dmeN VACX if diam(A)<d then A can be covered by m
balls of radius a .

Using this result one can easy prove that any finite exponent and finite power
of the macro-Cantor set is coarsely equivalent to it.
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